Magnesian Limestone, and when the Upper New Red Sandstone were formed, or when the Lias, Oolite, Green Sand, Chalk, and the several tertiary groups newer than the chalk, originated in succession. Nor is this all; distinct volcanic products may be referred to the subordinate divisions of each period, such as the Carboniferous, as in the county of Fife, in Scotland, where certain masses of contemporaneous trap are associated with the Lower, others with the Upper Coalmeasures. And if one of these masses is more minutely examined, we find it to consist of the products of a great many successive outbursts. by which scorize and lava were again and again emitted, and afterwards consolidated, then fissured, and finally traversed by melted matter constituting what are called dikes.* As we enlarge, therefore, our knowledge of the ancient rocks formed by subterranean heat, we find ourselves compelled to regard them as the aggregate effects of innumerable eruptions, each of which may have been comparable in violence to those now experienced in volcanic regions.

It may indeed be said that we have as yet no data for estimating the relative volume of matter simultaneously in a state of fusion at two given periods, as if we were to compare the columnar basalt of Staffa and its environs with the lava poured out in Iceland in 1783; but for this very reason it would be rash and unphilosophical to assume an excess of ancient as contrasted with modern outpourings of melted matter at particular periods of time.† It would be still more presumptuous to take for granted that the more deep-seated effects of subterranean heat surpassed at remote eras the corresponding effects of internal heat in our own times. Certain porphyries and granites, and all the rocks commonly called plutonic, are now generally supposed to have resulted from the slow cooling of materials fused and solidified under great pressure; and we cannot doubt that beneath existing volcanos there are large spaces filled with melted stone, which must for centuries remain in an incandescent state, and then cool and become hard and crystalline when the subterranean heat shall be exhausted. That lakes of lava are continuous for hundreds of miles beneath the Chilian Andes, seems established by observations made in the year 1835.1

Now, wherever the fluid contents of such reservoirs are poured out successively from craters in the open air, or at the bottom of the sea, the matter so ejected may afford evidence by its arrangement of having originated at different periods; but if the subterranean residue after the withdrawal of the heat be converted into crystalline or plutonic rock, the entire mass may seem to have been formed at once, however countless the ages required for its fusion and subsequent refrigeration. As the idea that all the granite in the earth's crust was produced simultaneously, and in a primitive state of the planet, has now been universally abandoned; so the suggestion above adverted to, may put us on our guard against too readily adopting another

* See Elements of Geology, 2d ed., chap. 29. to 33. inclusive.

† See ch. 27. ‡ See ch. 28.