In an egg of about $\frac{1}{860}$ of an inch in diameter, the whole central mass (Pl. 8, fig. 12, f) is coarsely granulated, whilst a layer of about one eighth the diameter of the egg, resting upon the yolk sac, consists of excessively minute molecular forms, densely packed together, (e,) resembling the entire contents of another egg of a somewhat smaller size, described above (Pl. 8, fig. 8a). The only explanation we can give of this appearance is, that it is one of the several modes by which the coarse granular yolk fills up the entire egg, as it resembles, in a certain respect, those phases where the concentric rings occur (Pl. 8, fig. 19).

Returning now to the consideration of the more closely related heaps of coarse, more or less angular granules, in an egg which may easily be recognized by the unaided eye, (Pl. 8, fig. 13a,) we find that, closely set among them, are multitudinous speck-like particles, which moreover extend their sway throughout the clear space. The darker portion of the yolk occupies here about two thirds of the whole egg cavity, and has scattered a few of its granules through the remaining third. Finally, the whole egg is filled by such coarse matter, but not uniformly; it still appears in distinct aggregations, (Pl. 8, fig. 15,) which, when first seen, dimly resemble so many granulated cell contents, the clear spaces between them representing, as it were, the cell walls. The granules are, again, finer than in the last egg, but more numerous in each heap.

The interspaces of these granular clusters constitute one of the several forms of albuminous concretions which remain to be noticed. In the present case they come nearest to the drop-like form; in fact, a slight approximation of the groups would complete their tendency to a globular arrangement, and end in perfect identity. However, the prevalence of granular cumuli throughout the egg is not always concomitant with the obliteration of the clear space, for at times the latter is still present over at least one fifth of the whole egg, (Pl. 8, fig. 17a,) whilst the components of the former have become dispersed more evenly through the previously clear interstices; and, moreover, they are considerably augmented and intermixed with clearer, less refractive, and less angular cell-like forms (Pl. 8, fig. 17b). Even till quite a late period an egg of $3^{1}{2}$ of an inch in diameter may be found, now and then, spotted with spherical, clear, and very hyaline globules of albuminous matter, (Pl. 8, fig. 16a, 16b,) so closely resembling the germinal vesicle, that nothing but their number, their much smaller size, and their easy diffusion by the slightest pressure, marks them as belonging to an entirely different category.

Here, again, it is not irrelevant to insist upon the presence of a wall around the germinal vesicle, as additional evidence for its existence may be derived from the conduct of the clear spaces just mentioned, whose origin and mode of formation we know so conclusively that we can readily foretell how easily pressure would cause them gradually to fade away by diffusion among the neighboring gran-