signifying *root-like feet*. Many of the species secrete shells, and although the shell of a single animal may not be larger than the point of an ordinary pin, it has pores or foramina through it which give exit to the thread-like processes; and the shells are therefore called *foraminifers*.

Rhizopods occur often as solitary animals; but generally, like polyps, they multiply by budding, and thus make groups of cells, some of the larger of which have the magnitude of a quarter of a head of a pin; of this nature are the Globigerinæ, and various other kinds, common over the bottom of the deep ocean, as well as in many shallow waters. A few form, through the budding process, disk-like or coin-shaped foraminifers, half an inch to an inch in diameter; and such are the *Orbitolites*, referred to, on page 121, as contributing largely to the coral reefs of the Australian seas, while common throughout the reef regions of the Pacific.

In one division of Rhizopods—that including the Globigerinæ and Orbitolites—the foraminifers are calcareous; in another, they consist of agglutinated sand; in another (that of the Polycystines) they are siliceous.

In another section of Protozoans called the *Flagellate Infusoria*, and including the Monad, there is a permanent mouth, and often a slender process (*flagellum*) which appears to serve the mouth by pushing in food. The animals are much more minute than the Rhizopods. To this section, as Prof. H. James Clark has shown, belong the sponges—a sponge being a compound group of these living infinitesimals produced by growth and budding.

A third division of Protozoans is that of the Vorticellæ and related forms. They have at top a circle or spiral of cilia, around a disk, in one part of which disk the mouth is situated. These beautiful species—occasionally large enough to be visible to the naked eye--often grow in clusters resembling somewhat those of the Hydroids and Bryozoans.