Darwin's theory of the struggle for life is, to a certain extent, a general application of Malthus' theory of population to the whole of organic nature. It starts from the consideration that the number of possible organic individuals which might arise from the germs produced, is far greater than the number of actual individuals which, in fact, do simultaneously live on the earth's surface. The number of possible or *potential individuals* is given us by the number of the eggs and organic germs produced by organisms. The number of these germs, from each of which, under favourable circumstances, an individual might arise, is very much larger than the number of real or actual individuals-that is, of those that really arise from these germs, come into life, and propagate themselves. By far the greater number of germs perish in the earliest stage of life, and it is only some favoured organisms which manage to develop, and actually survive the first period of early youth, and finally succeed in propagating themselves. This important fact is easily proved by a comparison of the number of eggs in a given species with the number of individuals which exist of this species. These numerical relations show the most striking contrast. There are, for example, species of fowls which lay great numbers of eggs, and yet are among the rarest of birds; and the bird which is said to be the commonest (the most widely spread) of all, the stormy petrel (Procellaria glacialis), lays only a single egg. The relation is the same in other animals. There are many very rare invertebrate animals, which lay immense quantities of eggs; and others again which produce only very few eggs, and yet are among the commonest of animals. Take, for example, the proportion which is observed among the human tape-