(Fig. 4) by continued self-division. The outer covering, or cell-membrane, of the globular egg remains undivided. First,

Fig. 4.-First commencement of the development of a mammal's egg, the so-called " cleavage of the egg" (propagation of the egg-cell by repeated self-division). A. The egg, by the formation of the first furrow, falls into two cells. B. These separate by division into four cells. C. The latter have divided into eight cells. D. By repeated division a globular accumulation of numerous cells has arisen.
the cell-kernel of the egg (the so-called germical vesicle) divides itself into two kernels, then follows the cell-substance (the yolk of the egg) (Fig. 4 A). In like manner, the two cells, by continued self-division, separate into four (Fig. $4 B$), these into eight (Fig. $4 C$), into sixteen, thirtytwo, etc., and finally there is produced a globular mass of very numerous little cells (Fig. 4D). These now, by further increase and heterogeneous development (division of labour), gradually build up the compound many-celled organism. Every one of us, at the commencement of our individual development, has undergone the very same process as that represented in Fig. 4. The egg of a mammal-represented in Fig. 3, and its development in Fig. 4-might as well be that of a man, as of an ape, dog, horse, or any other placental mammal.

Now, when we examine this simplest form of propagation, this self-division, it surely cannot be considered wonderful that the products of the division of the original organism should possess the same qualities as the parental

