phenomena, Cumulative and Functional Adaptation, we have the law of Correlative Adaptation. According to this important law, actual adaptation not only changes those parts of the organism which are directly affected by its influence, but other parts also not directly affected by it. This is the consequence of organic solidarity, and especially of the unity of the nutrition existing among all the parts of every organism. If, for example, the hairiness of the leaves increases in a plant by its being transferred to a dry locality, then this change reacts upon the nutrition of other parts, and it may result in a shortening of the parts of the stalk, and produce a more contracted form of the whole plant. In some races of pigs and dogs-for example, in the Turkish dog-which by adaptation to a warmer climate have more or less lost their hair, the teeth also have degenerated. Whales and Edentata (armadillos), which by their curious skin-covering are removed from the other mammals, also show the greatest deviations in the formation of their teeth. Further, those races of domestic animals (oxen and pigs) which have acquired short legs have, as a rule, also a short and compact head. Among other examples, the races of pigeons which have the longest legs are also characterized by the longest beaks. The same correlation between the length of the legs and beaks is universal in the order of stilted-birds (Grallatores), in storks, cranes, snipe, etc. The correlations which thus exist between different parts of the organism are most remarkable, but their real cause is unknown to us. In general, we can of course say, the changes of nutrition affecting an individual part must necessarily react on the other parts, because the nutrition of every organism is a connected, centralized activity. But why