and transparency, those that were the most colourless and transparent must have been most favoured in the active struggle for life which takes place on the surface of the ocean. They were enabled to approach their prey the most easily unobserved, and were themselves least observed by their enemies. Hence they could preserve and propagate themselves more easily than their more coloured and opaque relatives; and finally, by accumulative adaptation and transmission by inheritance, by natural selection throughout the course of many generations, their bodies would attain that degree of crystal-like transparency and colourlessness which we at present admire in them.

No less interesting and instructive than homochromic selection is that species of natural selection which Darwin calls "sexual selection," and it explains the origin of the so-called "secondary sexual characters." We have already mentioned these subordinate sexual characteristics, so instructive in many respects. They comprise those peculiarities of animals and plants which belong only to one of the two sexes, and which do not stand in any direct relation to the act of propagation itself.

Such secondary sexual characters occur in great variety among the higher classes of animals. We all know how striking is the difference of the two sexes in size and colour in many birds and butterflies. The male sex is generally the larger and more beautiful. It often possesses special decorations or weapons; as, for example, the spur and comb of the cock, the antlers of the stag and deer, etc. All these peculiarities of the two sexes have nothing directly to do with propagation itself, which is effected by the "primary sexual characters," or actual sexual organs.