Besides the reasons mentioned, there are many other facts (principally from the comparative anatomy of Echinoderma) which most distinctly prove the correctness of my hypothesis. I established this hypothesis in 1866, without having any idea that fossil articulated worms still existed, apparently answering to the hypothetical primary forms. Such have in the mean time, however, really been discovered. In a treatise "On the Equivalent of the North American Taconic Schist in Germany,"* Geinitz and Liebe, in 1867, have described a number of articulated Silurian worms, which completely confirm my suppositions. Numbers of these very remarkable worms are found in an excellent state of preservation in the slates of Würzbach, in the upper districts of Reusz. They are of the same structure as the articulated arm of a Star-fish, and evidently possessed a hard coat of mail, a much denser, more solid cutaneous skeleton than other worms in general. The number of body-segments, or metamera, is very considerable, so that the worms, although no more than a quarter or half an inch in breadth, attained a length of from two to three feet. The excellently preserved impressions, especially those of the Phyllodocites thuringiacus and Crossopodia Henrici, are so like the arms of many Star-fish (Colastra) that their true blood relationship seems very probable. This primaval group of worms, which are most probably the ancestors of Star-fish, I call Mailed worms (Phracthelminthes, p. 150.)

The three other classes of Echinoderma evidently arose at a later period out of the class of Sea-stars which have most faithfully retained the original form of the stellate

^{* &}quot;Ueber ein Aequivalent der takonischen Schiefer Nordamerikas in Deutschland."