the bed of a glacier just as the valley above and below is the bed of a river, one cannot but feel, though the problem is not wholly solved, that rock-basins are inseparably interwoven with the glaciation of the regions in which they occur. It is inconceivable that the drainage lines of the country were produced by underground movements, and it seems just as impossible to believe that the glen-lakes can have been produced by a series of rents and subsidences that occurred always in the valleys and were in each case neatly adjusted to the size and direction of the valley under which they took place.

Under any circumstances it is quite certain that the lakes must be of recent geological date. Any such basins belonging, for instance, to the time of the plication of the crystalline schists would have been filled up and effaced long ago. So rapid is the infilling by the torrents which sweep down detritus from the surrounding heights, that the present lakes are being visibly diminished, and they cannot, therefore, be of high geological antiquity.

It is worthy of remark that the glen-lakes are almost wholly confined to the western half of the Highlands, where they form the largest sheets of fresh water. Hardly any lakes save mountain-tarns are to be seen east of a line drawn from Inverness to Perth. West of that line, however, they abound both in the longitudinal and transverse valleys. The most remarkable line of them is that which fills up so much of the Great Glen. This singular straight depression, which cuts Scotland in two, has been already referred to as a great line of fracture in the earth's crust, probably dating back to an ancient geological period and subject to repeated movements along the same line. ${ }^{1}$ Here, if any-

[^0]
[^0]: ${ }^{1}$ Its very straightness is enough to suggest that the Great Glen owes its direction to a line of dislocation. I ascertained in the year 1864 that

