ment to a new form of equilibrium, the pole may have wandered some 10° or 15° from its primitive position, or have made a smaller excursion and returned to near its old place. In order, however, that these maximum effects should be produced, it would be necessary that each elevated area should have an area of depression corresponding in size and diametrically opposite to it, that they should lie on the same complete meridian, and that they should both be situated in lat. 45°. With all these coincident favorable circumstances, an effective elevation of 100 of the earth's surface to the extent of 10,000 feet would shift the pole 111; a similar elevation of would move it 1° 46;; of 1, 3° 17'; and of 1, 8° 41'. Mr. Darwin admits these to be superior limits to what is possible, and that, on the supposition of intumescence or contraction under the regions in question, the deflection of the pole might be reduced to a quite insignificant amount."

Under the most favorable conditions, therefore, the possible amount of deviation of the pole from its first position would appear to have been too small to have seriously influenced the climates of the globe within geological history. If we grant that these changes were cumulative, and that the superior limit of deflection was reached only after a long series of concurrent elevations and depressions, we must suppose that no movements took place elsewhere to counteract the effect of those about lat. 45° in the two hemispheres. But this is hardly credible. A glance at a geographical globe suffices to show how large a mass of land exists now both to the north and south of that latitude, especially in the northern hemisphere, and that the deepest parts of the ocean are not antipodal to the greatest heights

²¹ Phil. Trans. Nov. 1876.