94 THE FITNESS OF THE ENVIRONMENT

		DEGREES
	H ₂ O	0
Hydride of antimony	SbH ₃	-91.5
Hydride of arsenic	AsH ₃	-113.5
Hydrobromic acid	HBr	-87
Hydrochloric acid	HCl	-112.5
Hydrofluoric acid	HF	-92.3
Hydriodic acid	HI	- 50
Methane	CH	-185.8
Carbon dioxide	CO ₂	- 57
Hydride of phosphorus	PH ₃	-132.5
Hydrogen sulphide	H_2S	-85.6
Sulphurous oxide	SO_2	-72.7
Ammonia	NH ₃	-75
Nitric oxide	NO	-167

TABLE OF MELTING POINTS

This is, no doubt, one of the most important facts with which we are concerned, for while a very large number of chemical processes take place quite freely at 0°, the conditions are very different at the freezing point of ammonia, for instance. At that temperature the velocity of most chemical processes is but a fraction of one per cent of their velocity at 0°, and a large part of the chemical activity which is familiar to us ceases.

The result of the unusually high freezing point of water and of the phenomenon of latent heat is felt, however, not merely in the avoidance of an excessive fall in the temperature of lakes and seas. As above explained,