TEMPERATURE	DENSITY OF WATER	EXPANSION FROM 40
8 1 1 8		Per cent
0	0.99987	0.013
1	0.99993	0.007
2	0.99997	0.003
3	0.99999	0.001
4	1.00000	0.000
5	0.99999	0.001
6	0.99997	0.003
7	0.99993	0.007
8	0.99988	0.012
9	0.99981	0.019
10	0.99973	0.027
20	0.99824	0.176
30	0.99567	0.44
40	0.99233	0.77
50	0.98813	1.19
100	0.95934	4.07

This unique property of water is the most familiar instance of striking natural fitness of the environment, although its importance has perhaps been overestimated.¹ If, however, water, like all other common substances,

¹ It scarcely merits the curious rhapsody of Prout, for instance: "The above anomalous properties of the expansion of water and its consequences have always struck us as presenting the most remarkable instances of design in the whole order of nature — an instance of something done expressly, and almost (could we indeed conceive such a thing of the Deity), at second thought, to accomplish a particular object."—Prout, Bridgewater Treatise, "Chemical Meteorology and the Function of Digestion." London, 1834, pp. 249-250.