ization of many materials which could not otherwise be brought to the organisms which need them.

It has been calculated by Murray¹ that the total yearly run off of all the rivers of the earth is about 6500 cubic miles, carrying nearly 5,000,000,000 tons of dissolved mineral matter and prodigious quantities of sediment. The average composition of such water has been estimated as follows: —

Potassium as K₂O 2.40 Sodium as Na_2O 7.10 Lithium as Li_2O 0.20 43.20 Calcium as CaO Magnesium as MgO 14.70 1.20 Manganese as Mn_3O_4 2.80 Iron as FeO Aluminium as Al_2O_3 3.10 16.40 Carbonic acid as CO₂ 46 Phosphorus as P_2O_5 0.30 3.80 Nitric acid as N_2O_5 8 Sulphuric acid as SO_3 3.70 0.07 Ammonia as NH3 Total mineral matter 152.97

It is, of course, almost exclusively to these constant accessions that the ocean owes its salinity, which in the course of time has reached well-nigh inconceivable magnitude. The common salt alone in the oceans of all

¹ Russell, "Rivers of North America," p. 80.

Parts per Million