upper plate, at an angle of incidence of about 56°; a portion of the ray will be reflected, and will move in the direction $\boldsymbol{A} \boldsymbol{E}$; while another portion of the ray, $A B$, will pass through the bundle of glass plates onwards to M, according to the laws of reflection and refraction already stated. Now these two rays $\boldsymbol{A} \boldsymbol{E}$, and $\boldsymbol{B} \boldsymbol{M}$, possess remarkable properties, similar to one another in most respects, but directly opposed in another. Of these properties we shall endeavour to give a general idea.

If the ray of light $\boldsymbol{R} \boldsymbol{A}$, after falling upon the vertical glass A, Fig. 19, at an angle of incidence of 56°, be received on a plate of glass, \boldsymbol{C}, placed

at the same angle of incidence, and be then reflected from \boldsymbol{C} to \boldsymbol{E}; in the position intended to be shown in the figure, when the ray R is first reflected in a horizontal plane, $\boldsymbol{R} A C$, and then in a vertical plane, $\boldsymbol{A} \boldsymbol{C} \boldsymbol{E}$, the ray $\boldsymbol{C} \boldsymbol{E}$ becomes so weak as to be scarcely visible, the

