Foraminifera in certain fresh samples of ocean deposit. But it was not until 1871, by means of the Challenger Expedition, that any approximate estimate of the composition of typical pelagic oozes could be formed. The report by Murray and Renard (1891) on deep-sea deposits discloses the great importance of Globigerina ooze, which covers the floor, more especially of the central portions, of the Pacific Ocean, and is found at depths as great as 2,600 fathoms. It is more widely distributed than any of the other organic ocean muds, the Pteropod calcareous ooze, the siliceous ooze composed of diatomaceous material, or the Radiolarian siliceous ooze which is limited to very great depths of the ocean-floor. Littoral deposits are more mixed in character, usually comprising Molluscan, Bryozoan, and Echinoderman remains, although occasionally beds of individual types occur. Recent littoral deposits, on account of their more accessible position and the larger size of the faunas, have long been familiar to scientific observers, and were the first to be compared with fossil faunas in the rocks.

The activity of reef-building coral zoophytes has been one of the most interesting themes in modern scientific research. The red coral of the Mediterranean Sea was highly prized by the nations of antiquity for its beauty, and has always been an article of commercial importance. The first mention of the coral growths in the Red Sea was by the Portuguese writer, Don Juan de Castro; in 1616, Pyrard described the coral atolls of the Maldive Islands; and in 1742, Peter Forskäl by a series of investigations on coral reefs determined that the calcareous material for their construction was separated from sea-water by a small sedentary polyp. The closer study of the coral animal has shown it to be an ally of the Sea-Anemone or Actinian polyp, from which it is distinguished by its habit of growing as colonies, and of building up calcareous skeletal supports for the soft fleshy parts.

Geology has contributed a vast store of information about the skeletal structures of reef-building corals in past geological epochs, and at the present day few questions are of such common interest to the various branches of natural science as those concerning corals—the determination of the present geographical distribution of coral reefs, the climatic and physical conditions of growth, the chemical transformations undergone by the skeletal structures after withdrawal of the